Всероссийское СМИ "Время Знаний". Возрастная категория 0+

Лицензия на осуществление образовательной деятельности № Л035-01213-63/00622379

Свидетельство о регистрации СМИ ЭЛ № ФС 77 - 63093 от 18.09.2015 г. (скачать)


Исследование спектральных линий паров металлов и газов при помощи школьного двухтрубного спектроскопа

Исследование линейчатого спектра вещества позволяет определить, из каких химических элементов оно состоит и в каком количестве содержится каждый элемент в данном веществе.

Посмотреть публикацию
Скачать свидетельство о публикации
(справка о публикации находится на 2 листе в файле со свидетельством)

Ваши документы готовы. Если у вас не получается скачать их, открыть или вы допустили ошибку, просьба написать нам на электронную почту konkurs@edu-time.ru (обязательно укажите номер публикации в письме)

Научно-практическая конференция «Шаг в будущее»

Секция: Физико-математическое (математика, физика)

Исследовательская работа:

Тема: «Исследование спектральных линий паров металлов и газов при помощи школьного двухтрубного спектроскопа»

Автор: Салихзянов Амир Рафилович, ученик 10 класса МБОУ «Смаильская СОШ» Балтасинского района Республики Татарстан

Научный руководитель: Мухаммадиев Рустем Расилевич, учитель физики и информатики МБОУ «Смаильская СОШ» Балтасинского района Республики Татарстан

2021 год

Содержание

Введение ……………………………………………………….............3

1.Спектральный анализ……………………………………………..4

2. Энергия в спектре…………………………………………………………....7

3. Виды спектров………………………………………………………………..9

4. Устройство и принцип работы спектроскопа……….…………………..11

5.Области применения спектрального анализа.…………………………...11

6. Получение и исследование разных спектров.…………………………....12

Заключение……………………………………………………………………...15

Список использованной литературы………………………………………..16

Введение

Исследование линейчатого спектра вещества позволяет определить, из каких химических элементов оно состоит и в каком количестве содержится каждый элемент в данном веществе.

Метод определения качественного и количественного состава вещества по его спектру называется спектральным анализом. Спектральный анализ широко применяется при поисках полезных ископаемых для определения химического состава образцов руды. В промышленности спектральный анализ позволяет контролировать составы сплавов и примесей, вводимых в металлы для получения материалов с заданными свойствами.

Достоинствами спектрального анализа являются высокая чувствительность и быстрота получения результатов. С помощью спектрального анализа можно обнаружить в пробе массой 6*10-7 г присутствие золота при его массе всего 10-8 г. Определение марки стали методом спектрального анализа может быть выполнено за несколько десятков секунд.

Спектральный анализ позволяет определить химический состав небесных тел, удаленных от Земли на расстояния в миллиарды световых лет. Химический состав атмосфер планет и звезд, холодного газа в межзвездном пространстве определяется по спектрам поглощения.

Изучая спектры, ученые смогли определить не только химический состав небесных тел, но и их температуру. По смещению спектральных линий можно определять скорость движения небесного тела.

Спектральный анализ - физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров.

В основе спектрального анализа лежит изучение строения света, который излучается или поглощается анализируемым веществом. Методы спектрального анализа делятся на эмиссионные (эмиссия — испускание) и абсорбционные (абсорбция — поглощение).

Эмиссионный спектральный анализ основан на способности возбужденных атомов излучать.Если анализируемое вещество испарить, например, в электрической дуге,т.е.сообщить его атомам энергию и привести их в возбужденное состояние,то вещества начинает светиться. Атомы каждого элемента испускают излучение определенных длин волн, что позволяет определить,какие элементы входят в состав анализируемого вещества. Поскольку интенсивность излучения зависит и от количества излучающих атомов,то по наличие и положению полос делают вывод о составе вещества(качественный анализ),а по интенсивности полос определяют(с помощью калибровочной кривой)содержание отдельных элементов(количественный анализ )

Абсорбционный спектральный анализ основан на способности молекул и атомов поглощать электромагнитное излучение. Он широко применяется для анализа раствора и позволяет выявить состав раствора и концентрацию компонентов.

Рассмотрим схему эмиссионного спектрального анализа. Для того чтобы вещество излучало свет, необходимо передать ему дополнительную энергию. Атомы и молекулы анализируемого вещества переходят тогда в возбужденное состояние. Возвращаясь в обычное состояние, они отдают избыточную энергию в виде света. Характер света, излучаемого твердыми телами или жидкостями, обычно очень мало зависит от химического состава и поэтому его нельзя использовать для анализа. Совсем другой характер имеет излучение газов. Оно определяется составом анализируемой пробы. В связи с этим при эмиссионном анализе перед возбуждением вещества его необходимо испарить.

Испарение и возбуждение осуществляют в источниках света, в которые вводится анализируемая проба. В качестве источников света используют высокотемпературное пламя или различные типы электрического разряда в газах: дугу, искру и др. Для получения электрического разряда с нужными характеристиками служат генераторы.

Высокая температура (тысячи и десятки тысяч градусов) в источниках света приводит к распаду молекул большинства веществ на атомы. Поэтому эмиссионные методы служат, как правило, для атомного анализа и только очень редко для молекулярного.

Излучение источника света складывается из излучения атомов всех элементов, присутствующих в пробе. Для анализа необходимо выделить излучение каждого элемента. Это осуществляют с помощью оптических приборов — спектральных аппаратов, в которых световые лучи с разными длинами волн отделяются в пространстве друг от друга. Излучение источника света, разложенное по длинам волн, называется спектром.

Спектральные аппараты устроены таким образом, что световые колебания каждой длины волны, попадающие в прибор, образуют одну линию. Сколько различных волн присутствовало в излучении источника света, столько линий получается в спектральном аппарате.

Свет, разложенный в спектральном аппарате в спектр, можно рассматривать визуально или зарегистрировать с помощью фотографии или фотоэлектрических приборов. Спектральные аппараты — монохроматоры — позволяют выделять свет одной длины волны, после чего он может быть зарегистрирован с помощью фотоэлемента или другого электрического приемника света.

При качественном анализе необходимо определить, к излучению какого элемента относится та или иная линия в спектре анализируемой пробы. Для этого нужно найти длину волны линии по ее положению в спектре, а затем с помощью таблиц определить ее принадлежность тому или иному элементу. Для рассмотрения увеличенного изображения спектра на фотографической пластинке и определения длины волны служат измерительные микроскопы, спектропроекторы и другие вспомогательные приборы.

Интенсивность спектральных линий растет с увеличением концентрации элемента в пробе. Поэтому для проведения количественного анализа нужно найти интенсивность одной спектральной линии определяемого элемента. Интенсивность линии измеряют или по ее почернению на фотографии спектра (спектрограмме) или сразу по величине светового потока, выходящего из спектрального аппарата. Величину почернения линий на спектрограмме определяют на микрофотометрах.

Связь между интенсивностью линии в спектре и концентрацией элемента в анализируемой пробе устанавливают с помощью эталонов — образцов, подобных анализируемым, но с точно известным химическим составом. Эту связь обычно выражают в виде градуировочных графиков.

Вещества с очень близкими химическими свойствами, которые трудно или даже невозможно анализировать химическими методами, легко определяются спектрально. Например, относительно просто выполняется анализ смеси редкоземельных элементов или смеси инертных газов. С помощью спектрального анализа можно определять изомерные органические соединения с очень близкими химическими свойствами.

Методы атомного спектрального анализа, качественного и количественного, в настоящее время разработаны значительно лучше, чем молекулярного, и имеют более широкое практическое применение. Атомный спектральный анализ используют для анализа самых разнообразных объектов. Область его применения очень широка: черная и цветная металлургия, машиностроение, геология, химия, биология, астрофизика и многие другие отрасли науки и промышленности.

Скорость спектрального анализа значительно превышает скорость выполнения анализа другими методами. Это объясняется тем, что при спектральном анализе не требуется предварительного разделения пробы на отдельные компоненты. Кроме того, сам анализ выполняется очень быстро. Так при применении современных методов спектрального анализа точное количественное определение нескольких компонентов в сложном образце занимает всего несколько минут с момента доставки пробы в лабораторию до получения результатов анализа. Продолжительность анализа, конечно, возрастает, когда для повышения точности или чувствительности требуется предварительная обработка пробы.

Спектральный анализ является универсальным. С его помощью можно определять практически любые элементы и соединения в самых разнообразных твердых, жидких и газообразных аналитических объектах.

Для спектрального анализа характерна высокая избирательность. Это означает, что почти каждое вещество может быть качественно и количественно определено в сложной пробе, без ее разделения.

Источник света должен потреблять энергию. Свет - это электромагнитные волны с длиной волны 4*10-7 - 8*10-7 м. Электромагнитные волны излучаются при ускоренном движении заряженных частиц. Эти заряженные частицы входят в состав атомов. Но, не зная, как устроен атом, ничего достоверного о механизме излучения сказать нельзя. Ясно лишь, что внутри атома нет света так же, как в струне рояля нет звука. Подобно струне, начинающей звучать лишь после удара молоточка, атомы рождают свет только после их возбуждения.

Для того чтобы атом начал излучать, ему необходимо передать энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.

Тепловое излучение. Наиболее простой и распространенный вид излучения - тепловое излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов или (молекул) излучающего тела. Чем выше температура тела, тем быстрее движутся атомы. При столкновении быстрых атомов (молекул) друг с другом часть их кинетической энергии превращается в энергию возбуждения атомов, которые затем излучают свет.

Тепловым источником излучения является Солнце, а также обычная лампа накаливания. Лампа очень удобный, но малоэкономичный источник. Лишь примерно 12% всей энергии, выделяемой в лампе электрическим током, преобразуется в энергию света. Тепловым источником света является пламя. Крупинки сажи раскаляются за счет энергии, выделяющейся при сгорании топлива, и испускают свет.

Электролюминесценция. Энергия, необходимая атомам для излучения света, может заимствоваться и из нетепловых источников. При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Быстрые электроны испытывают соударения с атомами. Часть кинетической энергии электронов идет на возбуждение атомов. Возбужденные атомы отдают энергию в виде световых волн. Благодаря этому разряд в газе сопровождается свечением. Это и есть электролюминесценция.

Катодолюминесценция. Свечение твердых тел, вызванное бомбардировкой их электронами, называют катодолюминисенцией. Благодаря катодолюминесценции светятся экраны электронно-лучевых трубок телевизоров.

Хемилюминесценция. При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света. Источник света остается холодным (он имеет температуру окружающей среды). Это явление называется хемиолюминесценкией.

Фотолюминесценция. Падающий на вещество свет частично отражается, а частично поглощается. Энергия поглощаемого света в большинстве случаев вызывает лишь нагревание тел. Однако некоторые тела сами начинают светиться непосредственно под действием падающего на него излучения. Это и есть фотолюминесценция. Свет возбуждает атомы вещества (увеличивает их внутреннюю энергию), после этого они высвечиваются сами. Например, светящиеся краски, которыми покрывают многие елочные игрушки, излучают свет после их облучения.

Спектральный состав излучения различных веществ весьма разнообразен. Но, несмотря на это, все спектры можно разделить на три сильно отличающихся друг от друга типа.

Непрерывные спектры.

Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу.

Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры.

Линейчатые спектры.

Линейчатые спектры дают все вещества в газообразном атомарном(но не молекулярном)состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы данного химического элемента излучают строго определенные длины волн.

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

Полосатые спектры.

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.
Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.

В спектроскопе свет от исследуемого источника 1 направляется на щель 2 трубы 3, называемой коллиматорной трубой. Щель выделяет узкий пучок света. На втором конце коллиматорной трубы имеется линза, которая расходящийся пучок света преобразует в параллельный. Параллельный пучок света, выходящий из коллиматорной трубы, падает на грань стеклянной призмы 4. Так как показатель преломления света в стекле зависит от длины волны, то параллельный поэтому пучок света, состоящий из волн разной длины, разлагается на параллельные пучки света разного цвета, идущие по разным направлениям. Линза 5 зрительной трубы фокусирует каждый из параллельных пучков и дает изображение щели в каждом цвете. Разноцветные изображения щели образуют разноцветную полосу — спектр.

Используя школьный двухтрубный спектроскоп, были наблюдены и сфотографированы ряд спектров источников и элементов. Фотографии были сделаны любительским цифровым фотоаппаратом.

Для получения солнечного спектра необходимо лишь направить коллиматор спектроскопа на свет солнца и легко можно наблюдать сплошнойсемицветный спектр.

У светодиодных ламп узкий диапазон освещения. Поэтому для получения белого цвета используют комбинацию из нескольких ламп в одном корпусе. Спектр сфотографированный нами принадлежит лампе встроенной в сотовый телефон. Видно, что лампа состоит из трех монохроматических ламп: красной, зеленой, синей, при свечении вместекоторые воспроизводят свет близкое к белому.

Эксперимент по получению спектра натрия тоже довольно прост для выполнения. Для этого надо внести в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет ярко желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени.

Следующие спектры были получены используя спектральные трубки. Для того, что бы атомы химических элементов начали светиться, их нужно возбудить подавая на электроды трубки высокое напряжение, для чего использовался генератор высокого напряжения.

В спектре отчетливо видны характеризующие линии гелия: красный, желтый, голубой и фиолетовый.

Видна желтая и зеленая линия. Плохо наблюдается фиолетовая линия, присуще криптону.

Спектру неона присуще преобладание красных линий, что видно на фотографии.

Заключение

Спектральный анализ применяется почти во всех важнейших сферах человеческой деятельности: в медицине, в криминалистике, в промышленности и других отраслях, которые существуют для блага человечества. Таким образом спектральный анализ является одним из важнейших аспектов развития не только научного прогресса, но и самого уровня жизни человека.

Список использованной литературы

Время Знаний

Россия, 2015-2024 год

Всероссийское СМИ - "Время Знаний"
Выходные данные
Издатель: ИП Воробьев И.Е.
Учредитель и главный редактор: Воробьев И.Е.
Электронная почта редакции: konkurs@edu-time.ru
Возрастная категория 0+
Свидетельство о регистрации ЭЛ № ФС 77 - 63093 от 18.09.2015 г.
выдано Роскомнадзор
Обновлено по состоянию на: 06.05.2024


Правообладатель товарных знаков
ВРЕМЯ ЗНАНИЙ (Св-во №779618)
EDUTIME (Св-во №778329):
Воробьев И.Е.

Лицензия на осуществление образовательной деятельности № Л035-01213-63/00622379 выдана Министерством образования и науки Самарской области